Automated solutions for special surface finishing tasks

Rosler Metal Finishing explains how to implement finishing systems for stable, efficient, and flexible treatment of precision parts.


(Above) The Rosler Surf-Finisher opens new possibilities for the fully automatic processing of components with complex shapes. It even allows the targeted deburring, smoothing and polishing of specific surface areas on workpieces.

Battle Creek, Michigan – As surface finishing technology continues to evolve, so too does the demand for more efficient, stable, and accurate finishing processes – especially when it comes to complex, high-value components. Rosler Metal Finishing continues to meet this demand by providing surface finishing solutions, especially in the area of automated handling for precision components.

For decades, mass finishing methods have been successfully used for deburring, edge radiuses, surface smoothing, and polishing of mass-produced parts in batch or continuous feed systems. However, there is a growing demand for the defined finishing of single, high-value components with complex or free-form surfaces that cannot touch each other during the process. Today, for the reliable and efficient treatment of such components, Rosler Metal Finishing offers various new and improved systems, which guarantee absolute repeatable finishing results. They allow all-around surface treatment of workpieces or targeted finishing of specific surface areas in fully automatic processes that can be perfectly integrated into complete manufacturing lines.

(Below, right) During the high-frequency finishing process, the robot immerses the rotating workpieces mounted to a specially designed gripper into the media agitated by vibration. The finished workpieces undergo a subsequent rinse cleaning process.

Precision surface finishing
With an array of technical features Rosler’s Surf Finisher machine opens up new possibilities for precise and targeted treatment of complex components, wet or dry. The heart of this finishing process consists of one, occasionally two, 6-axis robots and a rotating work bowl filled with specially selected grinding or polishing media. The work bowl comes in different sizes allowing the treatment of relatively large components or the simultaneous, entirely touch-free finishing of multiple workpieces

The robot fulfills two functions. First, equipped with a specially designed gripper, it performs a material handling task by picking up the workpieces from and returning them to a transport belt, immersing them into the work bowl and conveying them to a cleaning/rinsing station. Secondly, the robot guides the workpieces through the processing media in pre-programmed movements including defined treatment angles, different immersion depths and rotary motion. This flexibility allows the targeted finishing of specific surface areas on the workpieces. 

During the complete process the work bowl containing the processing media is also rotating at a speed of up to 80rpm. The actual speed is determined by the workpieces to be treated and the respective finishing task. The robotic movement combined with the work bowl rotation creates a “surfing” effect with very high pressure between workpiece and media. This concurrent, intensive pressure creates a surface smoothing effect that produces perfect finishes within relatively short cycle times. Even with complex workpiece geometries the surf finisher generates surface readings as low as Ra = 0.04µm (1.6μ").

(Left) Parts with critical surface finish standards are also handled effectively. For example, a hip implant stem, polished to Ra = 0.04μm (1.6μ").

High-frequency finishing
The Rosler High-Frequency-Finisher (HFF) also includes one or more robots, which carry out two functions: material handling and programmed movement of the workpieces through the processing media. 

In the HFF system, the media for dry or wet processing within the work bowl is agitated by vibration with a speed of up to 3,000rpm. The robot, equipped with a specially designed gripper, immerses the workpieces into the agitated media. The dual movement of the robot and finishing media results in a high pressure and an all-around, highly intensive treatment of the parts. During the process the robot may completely remove the workpieces out of the media, turn them and immerse them again.

The combination of the independent robotic movement of the work pieces and the vibratory movement of specially selected media produces perfectly homogeneous and repeatable deburring, grinding and polishing results in surprisingly short cycle times. Throughout the whole process the work pieces never touch each other!

Drag Finishing with automatic loading and handling
The most recent example is Rosler’s Drag Finishing machines, which now feature fully automatic loading and unloading of the workpieces. This redesign was triggered to meet the needs or Walter AG, a multinational manufacturer of precision machining tools, with well-known brands such as; Valenite, Titex, and Prototyp. Walter uses Rosler’s fully automatic Drag Finishers to deburr a variety of different sized tool bodies. The custom engineered system consists of two interlinked drag finishers with six working spindles each and a robot that automatically mounts and dismounts the components to and from the spindles. This high precision finishing process required a specialized safety load system that was developed by combining surface modeling and load pattern simulation. The positioning of the spindles and the exact carousel location is determined by the controls of the drag finishing system. To ensure that handling errors do not occur, electronic sensors continuously monitor the correct pneumatic coupling of the work pieces to the spindles.

(Left) In order to completely automate the deburring of precision components such as tool bodies, drag finishers like the model R 6/1000 SF-Auto were completely redesigned to allow robotic loading/unloading of the workpieces.

Once loaded, Walter’s tool bodies are then “dragged” through the stationary processing media. The process parameters such as; carousel and spindle speeds, immersion depth and treatment times are stored in pre-set programs in the PLC. After completion of the finishing cycle the robot removes the tool bodies, moves them to a rinse and cleaning station and finally, places them onto a tray.

(Right) High-volume and high-value production is possible, such as these turbine vanes that have been surface ground and smoothed.

This innovative Drag Finishing system allows for fully automatic dry or wet processing without the workpieces ever touching each other. Up to this point, these types of components were typically deburred, smoothed and polished manually. This is not only costly but produces inconsistent finishing results. This new Drag Finishing technology represents a significant milestone in which repeatable and efficient surface finishing can be achieved for orthopedic implants, geared components, machining tools, aerospace, and automotive components.

Source: Rosler Metal Finishing USA LLC